

    
      Navigation

      
        	
          index

        	
          next |

        	fmrbenchmark 0.0.4 
 
      

    


    
      
          
            
  
User’s Guide

This is the User’s Guide to the fmrbenchmark repository [https://github.com/fmrchallenge/fmrbenchmark], which is part of a project to
develop benchmark problems for research in so-called “formal methods for
robotics.”  This effort is stimulated by competitions, and the main website is
https://fmrchallenge.org. The two other major forms of documentation are the API
manual [http://api.fmrchallenge.org] and the benchmark specifications [https://fmrchallenge.org/norm].  Among the latter documents are competition
rules. Besides these sources of documentation, there are comments in the code as
well as README and similar files throughout the repository.

For newcomers, a good place to begin is the Introduction.



	1. Introduction

	2. Problem domain: Scaling chains of integrators

	3. Problem domain: Traffic network of Dubins cars

	4. Problem domain: Factory cart clearing

	5. Contributing

	6. Developer’s Guide









          

      

      

    


    
         Copyright 2015-2016, Scott C. Livingston.
      Last updated on 12 Jun 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	fmrbenchmark 0.0.4 
 
      

    


    
      
          
            
  
1. Introduction

This page provides orientation and an overall introduction to the repository. It
is a good place to begin before studying a particular benchmark. There are two
founding ambitions of the project: to develop benchmark problems for research in
so-called “formal methods for robotics,” and to create standard interfaces,
formats, etc. for expressing problems and using tools that implement methods
described in the research literature. Our effort is analogous to that of
SMT-LIB [http://www.smt-lib.org], which is for research in satisfiability
modulo theories.

There are four major kinds of entities in the repository:


	benchmarks;

	analysis tools for reviewing results from using benchmarks;

	examples demonstrating components of benchmarks and solution controllers;

	documentation.



Spanning all four of the above kinds is the supporting infrastructure. This
refers to header files, message formats, etc. that may be used by more than one
benchmark and that may be of independent interest, besides benchmarking.

The repository as a whole has a single version number. Depending on the eventual
pace of growth and styles of usage, we may begin to version significant
components separately. In any case, version numbers are of the form M.m.u,
and changes only to u are not expected to break any current usage.


Warning

The interfaces to command-line tools, the names of important ROS topics, and
other user-level aspects of the repository may change with little warning
until version 0.1.0. Beginning at that time, care will be taken to ensure
backwards-compatibility and to have more gradual deprecation.




1.1. Formulation

A normative description of benchmarks as well as a development of notation and
problem formulation is given in the Challenge Document [https://fmrchallenge.org/norm].
Below is a summary.

Benchmarks are organized into problem domains (sometimes also called “problem
settings”), which are defined in terms of several parameters. A problem
variant refines the domain by constraining possible values that may be assigned
to a parameter, e.g., deciding that time can only be a multiple of a constant
(the period). Finally, a problem instance is defined as a particular selection
of values consistent with a problem variant. The instance is the thing that is
actually to be solved. A special case of this taxonomy is a concrete benchmark
from industry that is to be solved as given, i.e., there is no need to provide
more details like how time progresses or what the initial state can be. In such
a case, the problem domain, variant, and instance are all the same.




1.2. Support for platforms and programming languanges

There are no generic installation instructions. Instead, instructions and
requirements are described separately for each benchmark. Though there are
shared dependencies and some similar preparations, separately treating each
facilitates users who are only interested in some parts of the repository. E.g.,
try the Problem domain: Scaling chains of integrators.

While it may be possible to build the benchmarks and infrastructure on other
platforms, the current target is Ubuntu [http://www.ubuntu.com] 14.04
running Linux x86_64 and the following:


	ROS Indigo [http://wiki.ros.org/indigo/Installation/Ubuntu]

	Gazebo [http://gazebosim.org] as used with ROS [http://wiki.ros.org/gazebo_ros_pkgs]



The benchmarks are primarily implemented in C++ and C. As of version 0.0.0, most
of the examples and tools for reviewing results are in C++ and Python [https://www.python.org].







          

      

      

    


    
         Copyright 2015-2016, Scott C. Livingston.
      Last updated on 12 Jun 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	fmrbenchmark 0.0.4 
 
      

    


    
      
          
            
  
2. Problem domain: Scaling chains of integrators

Often referred to as “the first domain,” the basic problem is to find a
controller for a given chain of integrators system so that all trajectories
repeatedly reach several regions while avoiding others.


2.1. Preparations

While below we include pointers to the main websites for dependencies, many are
available via packages for your OS and may already be installed, especially if
you have ROS on Ubuntu 14.04. Supported platforms are described in the Introduction.


2.1.1. Dependencies


	Eigen [http://eigen.tuxfamily.org]

	Boost [http://www.boost.org], specifically Boost.Thread [http://www.boost.org/libs/thread/]
and bind [http://www.boost.org/doc/libs/1_57_0/libs/bind/bind.html].



On Ubuntu, Eigen can be obtained by installing the “libeigen3-dev” deb package
(https://packages.debian.org/jessie/libeigen3-dev).




2.1.2. Supplementary prerequisites

While not necessary to use the benchmark per se, supplemental objects including
tools for visualizing and reviewing results and example solutions are provided.
These have additional dependencies besides those that are required for the
benchmark. In particular, plotp.py and tdstat.py provide a means to
examine problem instances and results of trials, as demonstrated in the tutorial
below. Together with the fmrb Python package, which is under
tools/fmrb-pkg/ in the repository, the following additional dependencies are
present:


	NumPy, which is part of the standard scientific Python stack [http://www.scipy.org/stackspec.html]

	Matplotlib, also part of the standard stack

	pycddlib [https://pypi.python.org/pypi/pycddlib], a Python wrapper for
Komei Fukuda’s cddlib [http://www.inf.ethz.ch/personal/fukudak/cdd_home/index.html]

	Python Control Systems Library [https://github.com/python-control/python-control]



Once these are met, install fmrb from your copy of the repository, e.g.,

cd tools/fmrb-pkg
pip install -e .





or get it from PyPI [https://pypi.python.org/pypi/fmrb],

pip install fmrb










2.2. Tutorial

In the below code, $FMRBENCHMARK is the absolute path to a copy of the
fmrbenchmark repository on your machine.


2.2.1. Demonstrations of components

To build the “standalone” (i.e., independent of ROS) examples demonstrating
various parts of this benchmark, go to the dynamaestro directory
($FMRBENCHMARK/domains/integrator_chains/dynamaestro) and then follow the
usual CMake [http://www.cmake.org] build instructions. On Unix without an
IDE, usually these are

mkdir build
cd build
cmake ..
make





One of the resulting programs is genproblem, the source of which is
$FMRBENCHMARK/domains/integrator_chains/dynamaestro/examples/standalone/genproblem.cpp.
The output is a problem instance in JSON. To visualize it, try

dynamaestro/build/genproblem | analysis/plotp.py -





from the directory $FMRBENCHMARK/domains/integrator_chains/.




2.2.2. Controller examples

Note that the example controller lqr.py requires the Python Control System Library
(control) and a standard scientific Python stack including NumPy. Obtaining
these is described above in the Section Preparations.

Create a catkin workspace.

mkdir -p integrators_workspace/src
cd integrators_workspace/src
catkin_init_workspace





Create symbolic links to the ROS packages in the fmrbenchmark repository
required for this example.

ln -s $FMRBENCHMARK/domains/integrator_chains/integrator_chains_msgs
ln -s $FMRBENCHMARK/domains/integrator_chains/dynamaestro
ln -s $FMRBENCHMARK/examples/sci_concrete_examples





Build and install it within the catkin workspace.

cd ..
catkin_make install





Because the installation is local to the catkin workspace, before beginning and
whenever a new shell session is created, you must first

source install/setup.zsh





where the source command assumes that you are using the Z shell; try
setup.bash if you use Bash.
To initiate the performance of a collection of trials defined by the
configuration file mc-small-out3-order3.json in the ROS package
sci_concrete_examples of example controllers,

python $FMRBENCHMARK/domains/integrator_chains/trial-runner.py -l -f mydata.json src/sci_concrete_examples/trialconf/mc-small-out3-order3.json





This will cause trial data to be saved to the file mydata.json in the local
directory from where the above command is executed. A description of options can
be obtained from trial-runner.py -h.

In a separate terminal, run the example controller using:

roslaunch sci_concrete_examples lqr.launch





You can observe the sequence of states and control inputs using rostopic echo
state and rostopic echo input, respectively. At each time increment, the
state labeling is published to the topic /dynamaestro/loutput as an array of
strings (labels) corresponding to the polytopes containing the output at that
time.

Because we used the -l flag when invoking trial-runner.py above, two
additional topics are available. The labeling without repetition is published to
“/logger/loutput_norep”, and several elements (up to 3) of the state vector are
published to “/logger/state_PointStamped” as a PointStamped message, which can
be viewed in rviz [http://wiki.ros.org/rviz].

Once all trials have completed, the trial data can be examined using
tdstat.py. E.g., to get a summary about the data for each trial,

$FMRBENCHMARK/domains/integrator_chains/analysis/tdstat.py -s mydata.json





To get the labeling of the trajectory for trial 0, modulo repetition,

$FMRBENCHMARK/domains/integrator_chains/analysis/tdstat.py -t 0 --wordmodrep mydata.json





To check if the trajectory for trial 0 satisfies the corresponding reach-avoid specification:

$FMRBENCHMARK/domains/integrator_chains/analysis/tdstat.py -t 0 --checksat mydata.json





To get a description of options, try tdstat.py -h.









          

      

      

    


    
         Copyright 2015-2016, Scott C. Livingston.
      Last updated on 12 Jun 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	fmrbenchmark 0.0.4 
 
      

    


    
      
          
            
  
3. Problem domain: Traffic network of Dubins cars

Often referred to as “the second domain,” the basic setting is navigation in a
small network of roads with vehicles that follow unicycle-like dynamics.
Every road network is a 4-connected grid, subject to a rigid-body transformation: as such, the segments may not be axis-aligned.


3.1. Preparations

While below we include pointers to the main websites for dependencies, many are
available via packages for your OS and may already be installed, especially if
you have ROS on Ubuntu 14.04. Supported platforms are described in the Introduction.


3.1.1. Basic

There are two major variants of this benchmark: one based in simulation and
another on a physical testbed. We begin with preparations appropriate for both.


	Eigen [http://eigen.tuxfamily.org]



On Ubuntu, Eigen can be obtained by installing the “libeigen3-dev” deb package
(https://packages.debian.org/jessie/libeigen3-dev).

Several ROS packages for the Kobuki by Yujin Robot are required.


	kobuki_node [http://wiki.ros.org/kobuki_node] and dependencies.

	kobuki_description [http://wiki.ros.org/kobuki_description] and dependencies.



Install fmrb from your copy of the repository, e.g.,

cd tools/fmrb-pkg
pip install -e .





or get it from PyPI [https://pypi.python.org/pypi/fmrb],

pip install fmrb








3.1.2. Dependencies of the simulation variant


	Gazebo [http://gazebosim.org]

	kobuki_gazebo_plugins [http://wiki.ros.org/kobuki_gazebo_plugins]






3.1.3. Dependencies of the physical variant

(forthcoming)




3.1.4. Supplementary prerequisites

As for the Problem domain: Scaling chains of integrators, there is code that is relevant but not
required for this benchmark.

Teleoperation of the vehicle to be controlled can be achieved using
kobuki_keyop [http://wiki.ros.org/kobuki_keyop] ROS package. An example
demonstrating a configuration known to work in the simulation variant:

roslaunch dubins_traffic_utils teleop.launch










3.2. Tutorials

In the below code, $FMRBENCHMARK is the absolute path to a copy of the
fmrbenchmark repository on your machine.


3.2.1. Demonstrations of components

To build the “standalone” (i.e., independent of ROS) examples demonstrating
various parts of this benchmark, go to the dubins_traffic_utils directory
($FMRBENCHMARK/domains/dubins_traffic/dubins_traffic_utils) and then follow the usual CMake [http://www.cmake.org] build instructions. On Unix without an
IDE, usually these are

mkdir build
cd build
cmake ..
make





One of the resulting programs is genproblem, the source of which is
$FMRBENCHMARK/domains/dubins_traffic/dubins_traffic_utils/examples/standalone/genproblem.cpp.
The output is a problem instance in JSON. To visualize it, try

dubins_traffic_utils/build/genproblem dubins_traffic_utils/examples/trialsconf/mc-small-4grid-agents2.json | analysis/plotp.py -





from the directory $FMRBENCHMARK/domains/.




3.2.2. Launching a problem instance of the simulation variant

Create a catkin workspace.

mkdir -p dubsim_workspace/src
cd dubsim_workspace/src
catkin_init_workspace





Create symbolic links to the ROS packages in the fmrbenchmark repository
required for this example.

ln -s $FMRBENCHMARK/domains/integrator_chains/integrator_chains_msgs
ln -s $FMRBENCHMARK/domains/dubins_traffic/dubins_traffic_msgs
ln -s $FMRBENCHMARK/domains/dubins_traffic/dubins_traffic_utils
ln -s $FMRBENCHMARK/domains/dubins_traffic/dub_sim
ln -s $FMRBENCHMARK/domains/dubins_traffic/e-agents/wander
ln -s $FMRBENCHMARK/examples/dubins_traffic_examples





Build and install it within the catkin workspace.

cd ..
catkin_make install





Because the installation is local to the catkin workspace, before beginning and
whenever a new shell session is created, you must first

source install/setup.zsh





where the source command assumes that you are using the Z shell; try
setup.bash if you use Bash.

Finally, launch a small 4-grid road network with two adversarially controlled
vehicles, also known as e-agents (where ``e’’ abbreviates ``environment’‘).

python $FMRBENCHMARK/domains/dubins_traffic/trial-runner.py -f mydata.json $(rospack find dubins_traffic_utils)/examples/trialsconf/mc-small-4grid-agents2.json





This will cause trial data to be saved to the file mydata.json in the local directory from where the above command is executed.

The Gazebo server is launched without a GUI frontend, which is also known as
running headless.
A local viewer can be launched using

gzclient





The vehicle to be controlled has the ROS namespace /ego. The e-agents have
namespaces defined in the trials configuration file. In the example
mc-small-4grid-agents2.json used in this tutorial, these are /agent0 and
/agent1.

In a separate terminal, run your controller. For example, assuming your controller
is contained in the package your_controller with launch file foo.launch,
in a separate terminal, run

roslaunch your_controller foo.launch





You can run an example controller using:

roslaunch dubins_traffic_examples simple.launch





This is a simple controller that sets the ego vehicle’s forward and angular velocity based on the next goal to be visited, and cycles through goals in this manner.

Support code for working with road network descriptions is available in
roadnet.hpp and dubins_traffic.py.

For example, try

analysis/plotp.py dubins_traffic_utils/examples/data/square.json





from the directory $FMRBENCHMARK/domains/dubins_traffic/.









          

      

      

    


    
         Copyright 2015-2016, Scott C. Livingston.
      Last updated on 12 Jun 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	fmrbenchmark 0.0.4 
 
      

    


    
      
          
            
  
4. Problem domain: Factory cart clearing

(Not released yet.)





          

      

      

    


    
         Copyright 2015-2016, Scott C. Livingston.
      Last updated on 12 Jun 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	fmrbenchmark 0.0.4 
 
      

    


    
      
          
            
  
5. Contributing

There are many ways to contribute. Major concerns to keep in mind:


	Participants should adhere to our code of conduct [https://github.com/fmrchallenge/fmrbenchmark/blob/001b41dd0a841162bffd23b27d00092fa236aaf6/CODE_OF_CONDUCT.md],
which is CODE_OF_CONDUCT.md in the fmrbenchmark repository [https://github.com/fmrchallenge/fmrbenchmark].

	Our mailing list is fmrbenchmark-users@googlegroups.com [https://groups.google.com/forum/#!forum/fmrbenchmark-users].
There is also a low-volume  announcements newsletter [http://eepurl.com/bbxEcz].

	You must hold the copyright or have explicit permission from the copyright
holder for anything that you contribute. Furthermore, to be included in this
project, your contributed works must be under the standard “BSD 3-clause
license” or a comparable open-source license (including public domain
dedication). You can find a copy at LICENSE in the root of the
repository. A license is “comparable” if it is no more restrictive than the
Apache License, Version 2.0 [http://opensource.org/licenses/Apache-2.0].



Please report potential bugs or request features using the issue tracker [https://github.com/fmrchallenge/fmrbenchmark/issues]. Guidelines for
participating in development are given in Developer’s Guide.


5.1. Proposing benchmarks

Proposals about benchmark problems or supporting infrastructure are always
welcome and need not have a demonstrating implementation. Furthermore, in your
proposal you can use an implementation that is not ready for immediate inclusion
in the repository, e.g., if it is created entirely in MATLAB. Such
implementations are still useful because they provide a reference about your
original intent and can be a basis for porting, e.g., to C++ or Python. In most
cases, there are three parts involved in the inclusion of a benchmark:


	a normative description about the problem and methods of evaluation in the
Challenge Document [https://fmrchallenge.org/norm];

	introductory and tutorial treatment in the User’s Guide [http://docs.fmrchallenge.org],
and relevant additions to the API manual [http://api.fmrchallenge.org];

	details and practical considerations for using it as part of a competition.



Please report potential bugs or request features using the issue tracker [https://github.com/fmrchallenge/fmrbenchmark/issues].




5.2. Working on physical variants of the problem domains

One of our ambitions is to create benchmarks that involve physical systems. In
other words, we want to create well-documented testbeds that facilitate
repeatability of published experiments involving real robot hardware and are
challenging with respect to the state of the art.

There are a lot of incidental costs and resource requirements to develop
physical benchmarks, such as raw materials, lab space, etc. Usually these are
provided by each lab group for their own internal purposes (often with little or
no public disclosure of details). However, this project is a joint effort that
is not under the purview of a single grant nor institution. Thus an important
manner of contribution is to realize physical variants of the benchmarks in your
own lab and then give feedback about missing details, subtle considerations,
etc. Any of the venues listed above (at the beginning of Contributing)
can be used to provide comments. Also, the authors can be emailed directly [https://fmrchallenge.org/#contact].




5.3. Providing computing resources

Two important aspects of benchmarking are scale and comparability of performance
results. Several of the domains are designed to have problem instances that can
be arbitrarily large, e.g., Problem domain: Scaling chains of integrators. To support these
ambitions, we accept donations of hardware as well as of remote access to
computing resources, e.g., university-managed clusters or cloud computing
services.







          

      

      

    


    
         Copyright 2015-2016, Scott C. Livingston.
      Last updated on 12 Jun 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          previous |

        	fmrbenchmark 0.0.4 
 
      

    


    
      
          
            
  
6. Developer’s Guide

Consult Contributing, and join the mailing list fmrbenchmark-users@googlegroups.com [https://groups.google.com/forum/#!forum/fmrbenchmark-users].

Bugfixes and other corrections, implementations of new features, improvements to
documentation, etc. should be offered as pull requests [https://github.com/fmrchallenge/fmrbenchmark/pulls]. Patches can be submitted
through other media if you prefer, but please try to make it easy to use and
understand your proposed changes.

The benchmarks are primarily implemented in C++ and C. Unless there are strong
motivations to use a different programming language, we prefer these for
well-known reasons: they are fast, mature, standard, etc. Besides C and C++,
several core tools for analysis of results are in Python [https://www.python.org] and rely on widely-used numerical and scientific
Python packages, among others. Observe that “tools for analysis” are not part of
the benchmarks per se.

Examples can be expressed in any programming language or depend on any tool,
including dependencies that have restrictive licenses. However, as with
everything else in the repository, the example itself must be under the standard
“BSD 3-clause license” or a comparable open-source license (including public
domain dedication). If you are going to contribute examples having dependencies
that are not free as in freedom, please carefully document the special
requirements for running the example controller.


6.1. Style

Eventually we may create official style guidelines, but for now, please skim the
source code to get an indication of the preferred style.




6.2. Checklist for making releases


	tag in repository, and sign it.

	post fmrb Python package to PyPI.

	post releases of documentation: User’s Guide, API manual, and the Challenge Document.

	update website.









          

      

      

    


    
         Copyright 2015-2016, Scott C. Livingston.
      Last updated on 12 Jun 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	fmrbenchmark 0.0.4 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2015-2016, Scott C. Livingston.
      Last updated on 12 Jun 2016.
      Created using Sphinx 1.3.5.
    

  _static/comment.png





_static/file.png





_static/ajax-loader.gif





_static/up-pressed.png





_static/plus.png





_static/comment-bright.png





_static/down.png





_static/up.png





_static/comment-close.png





_static/down-pressed.png





search.html


    
      Navigation


      
        		
          index


        		fmrbenchmark 0.0.4 »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2015-2016, Scott C. Livingston.
      Last updated on 12 Jun 2016.
      Created using Sphinx 1.3.5.
    

  

_static/minus.png





